
 

 

Accelerator for Sparse Machine Learning 
L. Yavits and R. Ginosar 

Abstract— Sparse matrix by vector multiplication (SpMV) plays a pivotal role in machine learning and data mining. We propose 

and investigate an SpMV accelerator, specifically designed to accelerate the sparse matrix by sparse vector multiplication 

(SpMSpV), and to be integrated in a CPU core. We show that our accelerator outperforms a similar solution by 70x while achieving 

8x higher power efficiency, which yields an estimated 29x energy reduction for SpMSpV based applications. 

Index Terms—Sparse matrix multiplication, sparse matrix by sparse vector multiplication, SpMV, accelerator.   

——————————      —————————— 

1 INTRODUCTION 

parse matrix by vector multiplication (SpMV) is a fre-
quent bottleneck in machine learning and data mining 
workloads. The efficient implementation of SpMV be-

comes even more critical when applied to big data prob-
lems.  

Most research on SpMV acceleration addresses Sparse 
Matrix by Dense Vector multiplication (SpMDV) [7]. This 
paper focuses on Sparse Matrix by Sparse Vector multipli-
cation (SpMSpV), an essential kernel in machine learning 
algorithms such as sparse principal component analysis 
(PCA), or kernelized SVM classification and regression. 
Sparse PCA computes a co-variance matrix from a sparse 
dataset. It involves multiplication of one feature sparse 
vector by all other feature vectors in the matrix dataset. 
Kernelized SVM classifiers and regression engines com-
pute the squared distance between two sparse feature vec-
tors by calculating the inner-product [1].  

We propose an algorithm and an accelerator for 
SpMSpV, outperforming [1] by 70× while achieving a 
power efficiency gain of 8×. Our accelerator is specifically 
designed to be integrated into a CPU core. It shares the 
CPU cache and taps directly into the memory interface for 
faster access to the sparse matrix data.  

This paper makes the following contributions: 
- We present the SpMV algorithm and accelerator de-

signed to be integrated into a CPU core. The proposed 
algorithm significantly reduces the memory access in 
sparse matrix by sparse vector multiplication, by 
fetching only the matrix elements that produce non-
zero partial results; 

- A fully associative dual port product cache is de-
signed to further enhance the performance of the 
SpMSpV algorithm, by enabling an efficient accumu-
lation of partial results. 

The rest of this paper is organized as follows. Section 2  
presents the background and motivation. Section 3 intro-
duces the SpMSpV algorithm. Section 4 presents the sparse 

accelerator design. Section 5 discusses the evaluation re-
sults. Section 6 offers conclusions.  

2 BACKGROUND AND MOTIVATION 

A variety of dedicated hardware accelerators for sparse 
matrix multiplication have been proposed. Misra et al. [6] 
designed a parallel architecture comprising nnz processing 
elements (nnz is the number of nonzero matrix elements), 
and implemented a routing technique to improve the com-
munication. Andersen et al. [2] suggested implementing 
sparse matrix multiplication on the Distributed Array Pro-
cessor, a massively parallel SIMD architecture. Beaumont 
et al. [8] implemented matrix multiplication on a heteroge-
neous processing network. Wing [9] suggested a systolic 
array architecture, comprising a number of processing ele-
ments connected in a ring. Kieckhager et al. [12] used con-
tent addressable memory in the context of sparse matrix 
multiplication. Zhu et al. [10] suggested a 3-D stackable 
Logic-In-Memory (LiM) architecture. Yavits et al. [4] pro-
posed an associative processor for sparse matrix multipli-
cation. Some of the accelerator designs have been imple-
mented in FPGA, for example by Zhuo et al. [5], Sun et al. 
[3] and Dorrance et al. [11]. 

We consider two ways of multiplying a matrix by a vec-
tor. The first is by implementing an inner dot product of 
each row of the matrix and the vector. In this paper, we 
refer to this method as CSR, because a sparse matrix is 
likely to be stored in CSR format if this method is em-
ployed. The second method is multiplying each column of 
the matrix by an appropriate vector element, and accumu-
lating the product vector. We refer to this method as CSC, 
since a sparse matrix is likely to be stored in CSC format if 
such a method is employed.  

Multiplying a sparse matrix by a dense vector (SpMDV) 
using either method has the computational complexity of 
O(nnzA) where nnzA is the number of nonzero elements in 
the sparse matrix. The amount of data fetched from main 
memory (assuming the matrix is stored in main memory, 
while the vector is stored locally) is also O(nnzA). Hence, 
the arithmetic intensity of SpMDV (the ratio of perfor-
mance to memory bandwidth) is O(1).   

The situation is different when multiplying sparse ma-
trix by sparse vector (SpMSpV). The approximate number 

———————————————— 

 Leonid Yavits, E-mail: yavits@technion.ac.il. 
 Ran Ginosar, E-mail: ran@ee.technion.ac.il. 
 Authors are with the Department of Electrical Engineering, Technion-Israel 

Institute of Technology, Haifa 3200000, Israel. 
Manuscript submitted: 05-Apr-2017.  Manuscript accepted: 25-Apr-2017.  

Final manuscript received: 05-June-2017 
 

S 



 

of nonzero pairs is ���� × ����, where ���� is the sparsity 
of the sparse vector (the ratio of the number of nonzero el-
ements to the vector size). Hence the arithmetic intensity 
of SpMSpV implemented using the CSR method is 
O(����). Assuming sparsity of 0.02% (as explained in Sec-
tion 5), the performance of SpMSpV using CSR method is 
likely to be extremely low. 

We aim at increasing the arithmetic intensity of 
SpMSpV using the CSC method (and thus increasing ex-
pected performance). We achieve that by reducing 
memory access by fetching only those matrix elements that 
end up producing nonzero pairs. Consequently, the arith-
metic intensity of SpMSpV increases from O(����) to O(1), 
similar to SpMV, leading to performance improvement by 
a similar factor. The proposed algorithm works equally 
well for both SpMSpV and SpMDV, as well as for sparse 
matrix by matrix multiplication. 

3 SPMV CSC ALGORITHM 

The SpMV algorithm is presented in Fig. 1. It multiplies 
a m×n sparse matrix A by a vector B of length n, to produce 
a result vector C of length m.  

We compare our accelerator with the sparse accelerator 
introduced in [1]. The main advantage of our SpMV algo-
rithm is the expected reduction of memory access by 3-4 
orders of magnitude. This is made possible since our accel-
erator reads from memory only those nonzero elements of 
the sparse matrix A that are matched by a nonzero element 
of the sparse vector B. In contrast, reference [1] accelerator 
fetches from memory all nonzero elements of matrix A.  

 

Algorithm 1 CSC SpMV  

Let C(m) be a vector of size m, all zero initially. 

Let A(m,n) be an m×n matrix of nnzA nonzero elements, stored 

in CSC format, as follows: 

 APOINTER(n) is a double (8B) vector of column pointers; 

 AROW INDEX(nnzA) is a double vector (8B) of row indexes;  

 AVALUE(nnzA) is a double (8B) vector of nonzero elements 

of A; 

 Column j of A is held in  

AROW INDEX [APOINTERJ ,..., APOINTERJ+1-1] (row indices) and 

AVALUE[APOINTERJ ,..., APOINTERJ+1-1] (values). 

Let B be a column vector of nnzB nonzero elements, as follows: 

 BINDEX is a double vector (8B) of indexes;  

 BVALUE is a double vector (8B) of nonzero elements of B; 

Main: 

1: for (p = 0 ; p < nnzB; p++)  { 

2: j = BINDEX [p] ;   

3: bj = BVALUE [p] ; 

4: for (q = APOINTER [j] ; q < APOINTER [j+1] ; q++)    { 

5: i = AROW INDEX [q] ;  

6: aij = AVALUE [q] ; 

7: C [i] += aij * bj ; 

8: }  

9: } 
Fig. 1: CSC SpMV algorithm 

A significant disadvantage of this algorithm is that it ac-
cumulates the partial results (line 7 in Fig. 1) through all 

iterations. To implement such accumulation in a com-
pressed CSC format, the following operations have to be 
performed: a product vector element index needs to be 
looked up in the product vector storage, the corresponding 
product vector element value needs to be fetched (to a mul-
tiplier-accumulator) and written back (after accumula-
tion), and the product vector element index, if not found, 
needs to be stored alongside its value. Another option is to 
accumulate the product vector in a dense format. This 
eliminates the index lookup, but requires dense to CSC for-
mat conversion after completing the SpMV.  

The CSC algorithm can be implemented in software, 
with no hardware acceleration. This is the baseline of our 
evaluation (Fig 5, speedup=1). However, the CSC algo-
rithm can be significantly sped up by a specially designed 
hardware unit, an associative Product Cache, which sup-
ports the parallel implementation of those lookup, read 
and write operations. The Product Cache is described in 
Section 4. 

Another disadvantage of the CSC algorithm is non-con-
tiguous memory access (nonconsecutive matrix columns 
are typically fetched in CSC SpMSpV), which may reduce 
bandwidth and thus adversely affect the SpMSpV perfor-
mance.  

4 ACCELERATOR DESIGN 

4.1 Architecture 

The architecture of the SpMV accelerator is presented in 
Fig 2. The accelerator contains three main units: the sparse 
matrix Fetch Engine, the Floating point Multiplier-Accu-
mulator (FMAC), and the Product Cache. A controller 
(FSM) that controls the operation of the accelerator and an 
internal memory buffer are not shown.   
 

 

Fig 2. SpMV Accelerator Architecture, comprising sparse matrix Fetch 
Engine, FMAC and Product Cache. 

Fig 2 also shows the cache and memory interfacing of 
our  accelerator. Load and store commands similar to x86 
MOVNTQ instruction are used to bypass the cache hierar-
chy while loading the sparse matrix data directly from 
memory. The resulting product vector can be stored di-
rectly into memory, or through the L2 cache. The input vec-
tor B is assumed to be retained in the L1 cache. Although 
each element of vector B is used only once in the CSC 
SpMV algorithm of Fig. 1, vector B is stored locally because 
its nonzero elements are needed in advance in order to in-
dex the relevant columns of matrix A in the memory, as 



 

explained in Section 4.2.    
The Product Cache comprises two juxtaposed memory 

arrays, one randomly accessed (RAM) for values, and an-
other content addressable (CAM) for indices, where the 
word line (WL) of each RAM is connected (through a pipe-
line buffer) to the match line (ML) of the corresponding 
CAM row. This connection allows addressing the RAM 
content by a CAM row matched during a lookup.  Both 
RAM and CAM are dual port memories, to enable simul-
taneous read and write in RAM, as well as simultaneous 
lookup and write in CAM, as explained in Section 4.2. 

4.2 Operation 

The accelerator dataflow is presented in Fig 3. The ac-
celerator pipeline is presented in Fig 4. All data items are 
8B wide (double precision). The operation is done in six 
steps.  

 

Fig 3. Accelerator Dataflow. 

In step 0, the next sparse matrix A element AELEM (index 
and value) is prefetched from memory to an internal 
buffer. Step 0 is implemented in three phases, each taking 
several clock cycles. First, the relevant matrix A pointer is 
selected using the index of the next vector B nonzero ele-
ment (line 2 of Fig. 1). Second, the address to the relevant 
matrix column is generated using the pointer (line 4 of Fig. 
1). Third, the matrix element AELEM consisting of AROW INDEX 
and AVALUE is fetched from memory to the internal buffer 
(lines 5 and 6 of Fig. 1).   

The rest of the steps are single-cycle (Fig 4). At step 1, 
AROW INDEX and AVALUE are read from the internal buffer. At 
step 2, the partial result index CINDEX is looked up in the 
Product Cache using the row index AROW INDEX of AELEM as 
the search key. The matching row of the CAM is tagged 
and further used to select the relevant row of the RAM ar-
ray of the Product Cache, where the partial result value 
CVALUE is stored. If there is no match, it means that such 
row index is used for the first time. At step 3, the partial 
product CVALUE is read from the RAM to the FMAC (or re-
set, if there was no match). In parallel, the values of matrix 
A and vector B elements (AVALUE and BVALUE) are fetched to 
the FMAC from the memory buffer and L1 cache respec-
tively. At step 4, the new partial result (line 7 of Fig. 1) is 
calculated. At step 5, it is written back to the Product Cache 
(CVALUE is written into the RAM, and the new CINDEX= AROW 

INDEX is added to the CAM if there was no match). The 
write-back of the kth partial product coincides with the 
lookup for the (k+3)th AROW INDEX and the read of the (k+2)th 
CVALUE. To prevent pipeline stalls and associated delays, 
both RAM and CAM are made dual-ported.  

After the SpMSpV is completed, the product vector C is 
stored in the Product Cache in a compressed format, in 
which the vector elements could be unordered (in contrast 
to a conventional compressed format, where the elements 
are arranged in an ascending index order). Hence, there are 

two options: The first option is to store the product vector 
to memory (directly or through the L2 cache) in the unor-
dered compressed format. The operation of our accelerator 
is not affected by the order of the vector or matrix ele-
ments. The second option is to reorder the product vector 
C in ascending index order before storing it to memory. 

 
Fig 4. Accelerator Pipeline; bold lines at step 5 emphasize the 
concurrent read/write in the Product Cache. 

4.3 Area and power 

Assumptions are presented in Table 1. The estimated 
area of the SpMV accelerator is 0.14 mm2

. The power con-
sumption of the SpMV accelerator is dominated by the 
CAM array in the Product Cache, since it is constantly ac-
tive (one compare and one write every cycle) during the 
accelerator operation. The overall estimated power con-
sumption of the SpMV accelerator is 0.4W.    

TABLE 1. ACCELERATOR AREA AND POWER ASSUMPTIONS 

Parameter Value 

Product Cache Size 4k cache lines 

RAM width 64b 

CAM width 64b 

RAM bitcell size, 14nm 0.06�� [13] 

CAM/RAM cell size ratio 1.5 

Overhead 40% 

FMAC area 0.0625mm2 [1] 

CAM cell energy, 14nm 1fJ 

Operating Frequency 750MHz 

5 EVALUATION 

5.1 Methodology 

To evaluate the performance of the SpMV accelerator, 
we use 900 real-valued sparse matrices from the UFL 
Sparse Matrix Collection [13] with the number of nonzero 
elements spanning 100k to 760m. The input vector B is a 
randomly selected row of matrix A. The median sparsity 
of UFL matrices is 0.0002 (0.02%). To enhance the validity 
of this evaluation, we repeat the same matrix run 100 times, 
each time with a different (randomly selected row) sparse 
vector.  

5.2 Simulation results 

We simulate the SpMSpV using a cycle accurate simu-
lator of our accelerator. We compare our accelerator with 
the reference [1] sparse accelerator and with an un-acceler-
ated execution of  CSC SpMSpV algorithm of Fig. 1 on Intel 
i7-6600U CPU with 16GB DRAM, running at 2.6GHz.  



 

Fig 5 presents the simulated speedup of SpMSpV imple-
mented on our accelerator (assuming the product vector is 
reordered into the conventional compressed format), as 
well as the speedup of reference accelerator [1] over the un-
accelerated CPU implementation, as function of nnzA (a) 
and B vector sparsity spsB (b).  

  
Fig 5. Simulated Speedup of SpMSpV vs. (a) nnzA, (b) spsB. 

The median simulated speedup of our accelerator for all 
900 test matrices is 257×. The median speedup of our ac-
celerator relative to the reference [1] accelerator is 70×. The 
speedup tends to increase with growing number of non-
zero elements of matrix A, but decreases with B vector 
sparsity.  

The efficiency of our accelerator declines as input ma-
trix and vector become denser. For SpMDV, the perfor-
mance of our accelerator is limited by the number of 
FMACs. If it is increased to four, the SpMDV performance 
of our accelerator will match that of reference [1] accelera-
tor. In such adaptive design, three out of four FMACs are 
operational in SpMDV but shut down during SpMSpV.  

Fig 6(a) (left y-axis) presents the cumulative distribution 
of the number of nonzero elements in the product vector 
C. 91.6% of all SpMSpV runs produce vector C of fewer 
than 4k nonzero elements. Hence our design choice of the 
Product Cache size (4k). If nnzC exceeds 4k, some of the 
partial results can be evicted from the Product Cache and 
replaced by new results using one of the conventional 
cache replacement mechanisms, for example LRU. The ef-
fect of such eviction on the overall execution time is negli-
gible. The median speedup of our accelerator as a function 
of product cache size is also shown in Fig 6(a) (right y-axis). 

The median power efficiency of our accelerator (calcu-
lated as simulated speedup over power) relative to refer-
ence [1] accelerator is 8× (assuming the product vector is 
sorted into the conventional compressed format). Overall, 
we estimate approximately 29× average energy reduction 
for the SpMSpV based applications (kernelized SVM clas-
sification K-SVM-C, kernelized SVM regression K-SVM-C 
and sparse PCA). The energy reduction figures are shown 
in Fig 6(b), compared to reference [1] accelerator. 

6 CONCLUSIONS 

We propose an algorithm and an accelerator for Sparse 
Matrix by Vector Multiplication (SpMV), which is an es-
sential kernel in machine learning and data mining appli-
cations. Our accelerator is specifically designed to be inte-
grated into a CPU core. It shares the CPU cache and taps 
directly into memory interface for faster access to the 

sparse matrix data.  
Our accelerator is particularly efficient in accelerating of 

sparse matrix by spare vector multiplication, since it re-
duces memory access by 3-4 orders of magnitude. It is 
shown to outperform an existing in-CPU accelerator by 70x 
while achieving 8x better power efficiency, resulting in 29x 
overall energy reduction for the SpMSpV based applica-
tions.   

  
Fig 6. (a) Cumulative Distribution of nnzC (left) and Median Speedup 
(right) vs. Product Cache Size (b) Normalized Energy Reduction for 
SpMSpV Based Kernels, our vs. ref [1] accelerator. 

REFERENCES 

[1] A. Mishra, Nurvitadhi, E., Venkatesh, G., Pearce, J., and Marr, D, "Fine-
grained accelerators for sparse machine learning workloads," IEEE ASP-
DAC, pp. 635-640, 2017 

[2] J. Andersen, G. Mitra, D. Parkinson. "The scheduling of sparse matrix-
vector multiplication on a massively parallel DAP computer." Parallel 
Computing 18, no. 6 (1992): 675-697. 

[3] J. Sun, G. Peterson, O. Storaasli. "Sparse matrix-vector multiplication de-
sign on FPGAs." IEEE Symposium on FCCM, pp. 349-352, 2007. 

[4] L. Yavits, Morad, A., and Ginosar, R. (2015),” Sparse matrix multiplica-
tion on an associative processor.” IEEE Transactions on Parallel and Dis-
tributed Systems, 26(11), 3175-3183. 

[5] L. Zhuo, V. Prasanna. "Sparse matrix-vector multiplication on FPGAs." 
13th international symposium on FPGA, pp. 63-74. ACM, 2005. 

[6] M. Misra, D. Nassimi, V. Prasanna. "Efficient VLSI implementation of it-
erative solutions to sparse linear systems." Parallel Computing 19, no. 5 
(1993): 525-544. 

[7] N. Bell and M. Garland, "Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors," In Proc. High Performance 
Computing Networking, Storage and Analysis, pp 18:1-18:11, 2009. 

[8] O. Beaumont, Boudet, V., Rastello, F., and Robert, Y. (2001). Matrix mul-
tiplication on heterogeneous platforms. IEEE Transactions on Parallel 
and Distributed Systems, 12(10), 1033-1051. 

[9] O. Wing, "A content-addressable systolic array for sparse matrix compu-
tation." Journal of Parallel and Distributed Computing 2, no. 2 (1985): 
170-181. 

[10] Q. Zhu, Graf, T., Sumbul, H. E., Pileggi, L., and Franchetti, F. "Accelerat-
ing sparse matrix-matrix multiplication with 3D-stacked logic-in-
memory hardware," In IEEE HPEC 2013 (pp. 1-6) 

[11] R. Dorrance, Ren, F., and Marković, D. "A scalable sparse matrix-vector 
multiplication kernel for energy-efficient sparse-BLAS on FPGAs", 2014 
international symposium on FPGA. 

[12] R. Kieckhager, C. Pottle, “A processor array for factorization of unstruc-
tured sparse networks”, IEEE CCC, 1982, pp.  380-383. 

[13] S. Natarajan, et al. "A 14nm logic technology featuring 2nd generation 
FinFET, air-gapped interconnects, self-aligned double patterning and a 
0.0588 µm2 SRAM cell size," IEDM, 2014.  

[14] T. Davis, Y. Hu, "The University of Florida sparse matrix collec-
tion," ACM Transactions on Mathematical Software, 38, no. 1 (2011). 

 

S
p
e
e
d
u
p

o
ve

r
C

P
U

S
p

e
e

d
u

p
o
v
e

r
C

P
U

100 101 102 103 104 105

Product Cache Size

0

20

40

60

80

100

50

100

150

200

250

300


