
Revealing On-chip Proprietary Security Functions with
Scan Side Channel Based Reverse Engineering

Leonid Azriel, Ran Ginosar and Avi Mendelson
Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology, Haifa 32000 ISRAEL
leonida@tx.technion.ac.il, ran@ee.technion.ac.il, avi.mendelson@technion.ac.il

ABSTRACT
Proprietary cryptographic algorithms or protection schemes
often constitute part of the security solution in electronic
devices. Hence, these devices are prone to reverse engineer-
ing attacks that may reveal the details of these algorithms.
We propose a novel non-invasive method of reverse engi-
neering of digital integrated circuits that exploits the scan
chains originally inserted into the device for production test
automation. The scan chains unfold the sequential logic of
the device to form a combinational function. The device’s
functionality is then exposed by examining this function.
The resulting function is too large for direct learning, so we
developed heuristic learning algorithms that exploit common
properties of digital circuits, in particular limited transitive
fan-in of combinational logic and sub-circuit sharing proper-
ties. With these algorithms we show fast reconstruction of
an AES cryptographic accelerator. The algorithm used for
the AES is scalable, making it applicable to much larger
circuits.

Keywords
Hardware reverse engineering, Side-channel analysis and coun-
termeasures, Embedded Systems Security

1. INTRODUCTION
Reverse engineering of an integrated circuit is a complex

task that traditionally requires tedious work and expensive
equipment. Its ultimate goal is to discover the underlying
algorithm of a given physical device: the device’s behavioral
definition. We can represent the discovery task as a two-
stage process: (1) Extracting of the circuit from the physical
device and (2) extracting of the behavioral model from the
circuit. The boundary between the two stages may be blur-
red; nevertheless, these are usually two distinct tasks. The
first stage, as a rule, involves invasive techniques, such as
removing the package, performing cross-section, delayering,
and nanoscale imaging [19]. The second stage is usually
algorithmic [13, 15]. This paper addresses the first stage,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or repu-
blish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada
c© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3060403.3060464

circuit extraction, but proposes to do it non-invasively by
exploiting the internal scan chains. This approach provides
notable accuracy with simple and inexpensive equipment.

Scan insertion is a widely used DFT (Design-For-Test)
technique that allows for the automatic generation of test
vectors for production test of an integrated circuit. Thanks
to its efficiency, it has become a de facto standard for tes-
ting digital circuits. Recent research shows that scan inser-
tion may turn into an easy target for the attacker [6, 10].
Previous work primarily focuses on the vulnerability of the
registers that participate in the scan chain. Easy access to
these registers may reveal confidential information, such as
cryptographic keys. This paper presents a different attack
that reveals the functionality of the design itself. This se-
curity breach broadens the scope of possible exploits of the
scan mode to any device that may contain trade secrets or
proprietary cryptographic algorithms or protection schemes.
The proposed reverse engineering method can also serve po-
sitive purposes, such as competitive analysis, IP theft de-
tection [1], or discovery of malicious hardware implanted by
a third party during physical design.

The scan introduces a new shift mode, which arranges the
internal registers in one or more shift registers, called scan
chains (see Figure 1). The production tester may switch the
chip to the shift mode and use the scan chains to place the
chip in the desired state (ShiftIn) and to sample its current
state (ShiftOut). The ShiftIn and ShiftOut operations
can be combined with a single functional (Capture) cycle
to learn (Probe) the output of the combinational function
F for a given input. An exhaustive search over all possible
states of the device’s registers and input pins then reveals a
truth table that fully describes the function F .

The exhaustive search, due to its exponential complexity,
is practical only for very small devices, containing no more

State register: r

shift mode

Combinational Function: F

external outputs: o external inputs: i

Clock: ck

Figure 1: Scan Design.

233

than a few dozen registers. For the general case of lear-
ning an n-input Boolean function, the number of possible
functions is 22n . However, not every Boolean function can
be realized by a physically constrained integrated circuit. In
fact, most of the functions are not realizable. In other words,
the search space in the case of integrated circuits is much
smaller than in a general case. This is a direct corollary from
the Shannon Effect [14]. Whether it is possible to devise an
upper bound for the number of n-input Boolean functions
with limited complexity is an open question. If such a bound
exists, it may define the search space for our problem. Until
this question is answered, we take a heuristic approach ba-
sed on function properties. Our work correlates with the
field of Computational Learning theory, which studies lear-
ning algorithms for functions with certain properties, such
as linear functions, decision trees, DNF and junta functions
[16]. We use some of the algorithms developed in this field,
in particular algorithms that learn juntas.

We assume that the scan test interface is present and
accessible in the target device. Vendors of secure integra-
ted circuits often protect their scan interface with authen-
tication, obfuscation or other mechanisms. The scan-based
reverse engineering method may overcome some protection
mechanisms, especially when combined with other methods,
as detailed in Section 4. We refer the reader to [2] for more
details and discussion.

2. ALGORITHMS FOR LEARNING A
BOOLEAN FUNCTION WITH PROBES

The scan based attack turns the problem of reverse en-
gineering into the problem of learning a stateless Boolean
function. Here we describe the algorithms that learn the
circuit’s combinational function F exposed by the scan. We
start with a formal definition of the circuit (see Figure 1).

Definition 1. Let S be a digital circuit comprising a vec-
tor of inputs i = (i1, . . . , ia) ∈ {0, 1}a, a vector of outputs o
= (o1, . . . , ob) ∈ {0, 1}b, a state register r = (r1, . . . , rn) ∈
{0, 1}n, a clock input ck ∈ {0, 1} and a collection of com-
binational gates that implement the next state and output
function F = (F0, . . . , Fn+b)
s.t. (r ‖ o)next ck cycle = F (r ‖ i), when |r ‖ i| = N = n+ a.

The scan insertion arranges the bits of the state register r
in c scan chains For brevity, we omit the description of the
scan control, and assume immediate access to the state regis-
ter r. However, for computing the time complexity, we keep
in mind that the Probe operation lasts 2n/c+1 clock cycles,
one cycle for Capture and n cycles for each of the ShiftIn
and ShiftOut operations. The parameter c depends on the
number of pins, and we assume c�n. A probe operation
Probe(S, v) over circuit S is defined in Algorithm 1.

Algorithm 1 Probe(Circuit S, vector v)

1: r ‖ i := v . Set registers and inputs state to v
2: ot−1 := o . Sample outputs of S
3: Capture
4: return r‖ot−1 . New register values and outputs

A truth table of F can be obtained by running Probe ope-
rations on circuit S with all possible input vectors. This is
an exhaustive search over a truth table algorithm (ESoTT)

0 50 100 150 200 250 300
0

200

400

Fan In

N
um

be
r o

f r
eg

is
te

rs
 a

nd
 o

ut
pu

ts

0 50 100 150 200 250 300
0

25

50

75

100

C
um

ul
at

iv
e

Pe
rc

en
ta

ge

Figure 2: Transitive fan-in histogram for flip-flop in-
puts and primary outputs in the ITC’99 benchmark
circuits.

that grows exponentially and is not practical. Later in this
section, we present algorithms that leverage the limited tran-
sitive fan-in property of the circuit S to reduce the learning
complexity. Transitive fan-in reflects the number of inputs of
a combinational logic cone; for a typical combinational logic
cone, it is much smaller than N. Figure 2 shows a histogram
of transitive fan-ins of the logic cones from the circuits in
the ITC’99 benchmark [4] set. More than half of the cones
have a transitive fan-in of 64 or smaller. This observation
allows the use of heuristic based algorithms.

2.1 Algorithm CSoTT (Compact K-Search
over Truth Table)

In the Boolean function domain, the transitive fan-in is
represented by the support size of the function. Strictly
speaking, the transitive fan-in of a logic cone is greater or
equal to the support size of the corresponding function. The
learner may assume some limit Kmax on the transitive fan-
in of the combinational logic cones in the circuit of interest
based on prior knowledge or statistics. Choosing Kmax � N
reduces the search space significantly.

Every output bit yi depends on some subset Gi of all the
function variables. Hence, it is sufficient to examine the
function F with a set of input vectors that cover all value
combinations of all subgroups G s.t. |G| ≤ Kmax. As a tri-
vial example, when Kmax = 1, the function can be learned
using the 0 vector and all input vectors, in which only one
bit is set. More generally, to reconstruct the function F , it
is sufficient to test it with a group of vectors with Hamming
weight (HW) of up to Kmax. CSoTT (Algorithm 2) im-
plements this method by iterative probing of the function F
with vectors v, starting with vectors with HW=0 and going
up to Kmax. If bit i of the probe result is equal to 1, i’s
entry of the Onset table is updated with a new implicant
candidate, unless a cover of the corresponding term already
exists in the table. If the bit is 0, but the Onset table inclu-
des an implicant candidate t, which is a cover of v, then t is
removed from the table. Instead, Onset is updated with all
the terms covered by t, all literals of which match bits in v
equal to 1, excluding v itself.

For intuition, suppose that for some output bit i, the
function Fi is positive unate, namely, all the literals in its
DNF form are positive. Recording only positive literals is
then sufficient to represent Fi. Moreover, only primary im-
plicants can be stored. Now suppose there is a term t with
a single negative and l positive literals. After l Hamming

234

cd
ab 00 01 11 10 00 01 11 10 00 01 11 10

00 0 0 0 0 0 0 1 0 0 0 1 0

01 0 0 0 0 0 0 1 0 0 0 1 0

11 1 1 1 1 1 1 1 1 1 1 1 0

10 1 1 1 1 1 1 1 1 1 1 1 1

1. f = a 2. f = a ∨ c∧d

3. f = a∧b∧¬c ∨ a∧¬b∧c ∨ a∧¬b∧¬c ∨ c∧d

 = (a ∧ ¬(b∧c)) ∨ c∧d

Figure 3: CSoTT algorithm stages with their respective Karnaugh maps.

weight iterations, the algorithm’s table will contain a vector
that includes all the positive literals in t. At the iteration
l+1, the probe operation on the vector with all the variables
from the term t set to 1 will return 0. As a result, the al-
gorithm will add the required negative literal to the stored
vector. This approach can be extended to any number of
negative literals.

Algorithm 2 CSoTT

1: F0 := Probe(S,0)
2: Onset[i] = ∅ for all i from 1 to n+b
3: for K from 1 to Kmax do
4: for all v ∈ {0, 1}N s.t. HW (v)=K do
5: P := Probe(S,v)⊕F0
6: T := ∧Tj s.t. vj=1 . compose term
7: for i from 1 to n+b do
8: if P [i]=1 & cover(T)/∈Onset[i] then
9: add(Onset[i],T)

10: else if P [i] = 0 then
11: call updateOnset(T ,i)
12: end if
13: end for
14: end for
15: end for
16: procedure updateOnset(T ,i)
17: for all t ∈Onset[i]=cover(T) do
18: for all t̂=cover(v) s.t. t=cover(t̂) do
19: tinv := ∧¬tn for n s.t. tn=1 AND tn /∈ t̂
20: t̃ := t̂ ‖ tinv

21: add(Onset[i],t̃)
22: end for
23: end for
24: remove(Onset[i],t)
25: end procedure

The algorithm’s iterative operation can also be demon-
strated using Karnaugh maps. Figure 3 shows the algo-
rithm stages for an example single-bit function F (a, b, c, d) =
(a ∧ ¬(b ∧ c)) ∨ c ∧ d. At stage 1 (HW = 1), the only re-
corded implicant candidate is a. At stage 2 (HW = 2)
the implicant c ∧ d is added. At stage 3 (HW = 3), the
implicant candidate a is found incomplete, since the probe
operation on a vector {a, b, c, d} = 1110 yields a result of 0.
Thus, it is replaced with higher order terms as shown in the
corresponding Karnaugh map in the figure. At the end of
the algorithm’s execution, the Onset table contains a DNF
representation of the function F .

CSoTT Time and Space Complexity The number of
probes in CSoTT equals the number of elements in {0, 1}N

with Hamming weight of Kmax or smaller, that is
Kmax∑
i=0

(Ni) ≤

1 + NKmax . Hence, the time complexity of the algorithm
can be written as:

TCSoTT = O[(2n/c + 1) · (1 + NKmax)] (1)

The space required for CSoTT is bounded by the worst-
case size of a DNF representation of a function with Kmax

variables. In practice, the memory space for CSoTT is
roughly the size of the minimal DNF representation of F .

SCSoTT = O[No ·Kmax · 2Kmax−1] (2)

Clearly, due to exponential growth, Kmax of a typical ci-
rcuit is too high for the algorithm to be practical. A lower
K can be selected for partial reconstruction of the function
F . For example, in approximately half of the cases from the
ITC’99 statistics, the transitive fan-in is smaller than 50,
and for 25% of them it is below 32. This partial informa-
tion may provide an adversary with sufficient information to
carry out the attack.

2.2 Algorithm ISoTT (Incremental CSoTT)

Algorithm 3 ISoTT

1: Pick Kinit, Kstep

2: K := Kinit

3: Run CSoTT(Kmax=K) on S
4: do
5: for all m ∈Onset s.t. HW(m)=Kinit do
6: for all j s.t. mj ∈ m: set vj to constant 1;
7: Run CSoTT(Kmax=K) on remaining bits of v
8: end for
9: K := Kmax + Kstep

10: while there is a change in Onset

ISoTT is a speculative algorithm that invokes CSoTT a
number of times. After the first invocation of CSoTT with
a computationally reasonable Kmax, the Onset table will
contain a set of implicants {T}, each comprising a set of va-
riables {GT }. We speculate that if the function F contains
higher order terms, many of them are a superset of some
set in {GT }. This is supported by the observation that the
same sub-circuit may belong to several logical cones. One
example of this phenomenon is the carry propagation logic
in arithmetic circuits. The ISoTT algorithm thus adds
incremental phases, in which for each of the terms recorded
in the Onset table, CSoTT runs over a subset of vectors,
where each of the vectors is an extension of the vector re-
presented by this term. The parameter Kstep controls the
magnitude of the extension. The algorithm runs as long as
there is a change in the Onset table.

ISoTT implements a greedy best-first search method. At
every step of the algorithm, CSoTT is called as many times

235

as the number of implicants with the maximum Hamming
weight in the table at the beginning of running this step.
Thus, the time complexity of a single algorithm is:

TISoTT ≤ O[SISoTT (step−1) · TCSoTT (Kmax = Kstep)] (3)

From (3), ISoTT ’s performance depends on the structure
of the circuit and on the size of its minimal DNF represen-
tation. ISoTT is based on speculation, therefore it does not
guarantee correctness. However, for some examples, such as
the arithmetic circuits, ISoTT achieves full reconstruction.

2.3 Algorithm JSoTT (Junta based Search
over Truth Table)

JSoTT is a randomized algorithm that also exploits the li-
mited transitive fan-in property. A function f : {0, 1}n→{0, 1}
is called a k-junta for k ∈ x if it depends on at most k of
its input coordinates; i.e., f(x) = g(xi1 , · · · , xik) for some g:
{0, 1}n→{0, 1} and i1, · · · , ik ∈ [n] [16]. Hence, algorithms
that learn junta functions from queries can be used to re-
construct combinational logic cones with a limited transitive
fan-in. We take the adaptive algorithm from [7]. The algo-
rithm runs for every output bit and comprises two phases:
finding dependencies and function discovery. At the first
phase, a set of probes with random input vectors is prepa-
red. The results of the probes are used to find input bits
affecting the output (relevant variables or RV).

Algorithm 4 JSoTT

1: Phase 1: Find relevant variables
2: F0 := Probe(S,0)
3: RV[i] = ∅ for all i from 1 to n+b
4: loop Kmax · 2Kmax times
5: v := random(1,. . . ,2N − 1)
6: P := Probe(S,v)⊕F0
7: add(Probes, 〈v,P 〉)
8: end loop
9: for i from 1 to n+b do . Each output bit separately

10: for all 〈v, P 〉 in Probes do
11: v̂ := {v̂1, . . . , v̂N} = v
12: For all j from 1 to N: v̂j = 0 if (vj /∈RV[i])

13: P̂ := Probe(S,v̂)⊕F0

14: if Pi 6= P̂i then
15: find next RV by binary search on v keeping

all vj ∈ RV [i] fixed1

16: add(RV[i], RV)
17: end if
18: end for
19: end for
20: Phase 2: Discover logical functions
21: for i from 1 to n+b do
22: Call CSoTT2 for output bit i with input composed

from bits in RV[i] and Kmax = |RV [i]|
23: end for

The algorithm finds variables that result in different probe
results between vectors. Consider two input vectors v and
u from the random vector set, such that Probe(S, v) 6=
Probe(S, u). The vectors v and u differ in the number of
bits. If we start swapping the discriminating bits in v one
by one (moving towards u), there will be a step at which
the probe result will change. The variable that caused this
change is a relevant variable. This operation is repeated for

all the vectors in the set in order to find additional relevant
variables, while the variables already known to be relevant
will not be swapped. Finally, for faster search, rather than
going one by one, the variables can be swapped in groups
using the binary search principle. After the relevant varia-
bles are found for each output bit, a logical function is disco-
vered by checking all the value combinations of the variables
relevant to this output bit. This is the second phase.

JSoTT Time and Space Complexity. From [7]:

TJSoTT ≤ O[Kmax·2Kmax ·logNo+No·(logNo+2Kmax)] (4)

JSoTT scales well with the circuit size. Hence, it is bet-
ter than ISoTT for large circuits. However, thanks to its
heuristic nature, ISoTT overperforms for certain circuits.

3. EXPERIMENTAL RESULTS
We evaluated the algorithms from Section 2 on a set of

synthetic benchmarks and one real application benchmark.
For this, we built a software simulator that models digital ci-
rcuits with a Probe operation: an operation that represents
the circuit’s next state function F according to Definition
1. The simulator also implements the algorithms defined in
Section 2. The output of the algorithm, the circuit hypothe-
sis function f , is further matched against the original circuit
function F . The simulator performs the matching by com-
paring the outputs of the functions F and f using a statisti-
cal method with a sufficiently large sample set of randomly
selected inputs. ESoTT serves as a baseline. For ISoTT ,
we perform a series of runs with different Kinit and Kstep

parameters, and then select the best results.

3.1 Validation of Concept
We first checked the correctness of the scan based imple-

mentation of Probe, with the Validation of Concept expe-
riment. For this experiment, we used a simple incrementor
circuit S. The circuit description was written in Verilog and
synthesized, including scan insertion, using Synopsys tools.
On the netlist with scan we ran ESoTT using the Verilog
behavioral simulator. Note that the algorithm execution was
preceded by learning the length of the scan chain from shif-
ting in a pattern to the scan input and counting the number
of cycles until the pattern was observed at the scan output.
The reconstructed circuit S′ (Figure 4) comprises (1) a re-
gister R comprising all n flip-flops in the scan chain, and
(2) a combinational function (represented by a truth table)
obtained by ESoTT . After obtaining the reconstructed cir-
cuit S′, we confirmed its equivalence to the original circuit S
with a formal logic equivalence tool. The remainder of this
section presents results from the software simulator, which
uses the Probe abstraction assuming correctness of its un-
derlying scan-based implementation.

Scan Insertion
+ ESoTT Logic

Logic

TT Lookup table

Original Circuit S Reconstructed Circuit S’

R

Figure 4: Validation of Concept Circuit Diagram.

236

10 20 30 40 50
100

105

1010

1015

Pr
ob

es
Adder

ESoTT
JSoTT
ISoTT

10 20 30 40 50
100

105

1010

1015

N

Sp
ac

e

ESoTT
JSoTT/ISoTT

10 20 30 40 50

105

1010

Pipelined Accumulator

ESoTT
JSoTT
ISoTT

10 20 30 40 50

105

1010

N (~Width*Depth)

ESoTT
JSoTT/ISoTT

Figure 5: Algorithm results with arithmetic circuits.
Runtime (in number of probes) and space require-
ments for a single adder and a pipelined accumulator
with different sizes.

3.2 Arithmetic and Data Path Elements
We first evaluate the algorithms when applied to com-

mon building blocks of the digital circuits. We start with
arithmetic circuits and measure the runtime and space requi-
red for a full reconstruction of the adder circuit. Although
arithmetic circuits are characterized by tight dependency,
which makes the limited fan-in optimization inefficient, their
regular and recursive structure is useful for the incremental
ISoTT algorithm. Indeed, as shown in Figure 5, ISoTT is
the most efficient for the adder.

The adder implements a single function, where the limi-
ted fan-in approach has little advantage; thus, all the al-
gorithms still run in exponential time. We expect to see
the speedup with structures having loose dependencies bet-
ween their sub-structures. As an example, we took a pipeli-
ned accumulator circuit built of pipeline stages; each merely
adds the result of the previous stage to the input vector.
When unfolded to a combinational structure, it turns to a
set of adders in a parallel construction. Here, Kmax is de-
rived from the size of the single adder and does not depend
on the number of pipeline stages. Therefore, we observe
polynomial growth of space and time in Figure 5.

Next, we evaluate our algorithms with a multiplexer, a
typical element of a data path. For example, unfolding a re-
gister file with scan results in a multiplexer. The size of the
input vector to the multiplexer with bus width W and rank
(number of input busses) R is N=R·W . However, every out-
put bit depends on only R+log2R bits; namely, Kmax does
not depend on the bus width. This makes the algorithms,
which leverage the limited fan-in, particularly efficient for
wide data path structures. Interestingly, ISoTT performs
better for all the arithmetic circuits, despite JSoTT ’s lower
theoretical complexity. A partial explanation is that while
for JSoTT Kmax represents the maximum transitive fan-in
of combinational circuits, for ISoTT the maximum impli-
cant size can be used as Kmax. In this sense, ISoTT can be
regarded as a DNF learning algorithm [3].

3.3 AES Accelerator
ISoTT is superior with regular and structured circuits:

the more structure (or less entropy) is present in the cir-
cuit, the better ISoTT can exploit it. JSoTT , however, is
better suited to high entropy circuits characterized by the
avalanche effect, which facilitates exploration of dependen-
cies. We took the tiny AES core from the Open Cores repo-
sitory [11] as an ultimate example of a high-entropy circuit.
This is a highly pipelined implementation of the AES en-
cryption/decryption, which contains 6848 internal registers.
The maximum transitive fan-in of the circuit is 8. Neverthe-
less, thanks to the avalanche effect, Kmax as low as 4 suffices
for detecting all the dependencies. Hence, JSoTT learns the
AES circuit precisely and with little effort, despite its formi-
dable size; see Table 1. The accuracy indicates the number
of correctly reconstructed flip-flops. Because the algorithm
is random, results differ slightly between invocations.

Table 1: AES Circuit Reconstruction
Selected Kmax Accuracy Number of probes

2 44% 389109

3 93% 1251169

4 100% 1594819

Note that cryptographic functions, considered complex,
are actually an easy target for our reverse engineering attack.
Additionally, thanks to the scalability of JSoTT , the size of
the circuit is less important than its structure. For example,
a deeper pipeline increases the chance of successful reverse
engineering thanks to the finer partitioning of the logic.

4. RELATED WORK
Several papers discuss non-invasive methods for reverse

engineering. Kash et al. [12] propose an optical method for
monitoring switching activity of different locations in the ci-
rcuit. This method requires prior knowledge of the circuit
and access to test patterns. The Side Channel Analysis for
Reverse Engineering (SCARE) [20] employs power analysis
to obtain design information. This information is coarse due
to the natural limitations of the power analysis. [13] and [15]
present various techniques addressing phase two of the re-
verse engineering process, behavioral model extraction. Our
work focuses on the first phase, netlist extraction.

Saab et al. [17] first proposed using the scan to extract the
functionality of an integrated circuit. They present a rand-
omized algorithm that finds dependencies between registers
and evaluate it with small benchmarks and an AES function.
We add the discovery phase and provide a systematic le-
arning method along with a discussion of the algorithms’
complexity and scalability metrics. We also propose a heu-
ristic algorithm tuned for certain types of (e.g. arithmetic)
circuits. In [8], scan based techniques are combined with in-
vasive methods to discover camouflaged cells. The authors
use SAT solvers to discover the function of the camouflaged
cells, achieving notable efficiency. Our non-invasive scan ba-
sed attack assumes the entire logic cone as a black box.

Other papers propose countermeasures against the scan
based side-channel attack. Da Rolt et al. [5] present their
comprehensive classification, which we use to show that some
of the countermeasures are ineffective against the scan ba-
sed reverse engineering attack. For example, Da Rolt shows
that the Advanced DFT Structure is insecure against the

237

scan side channel attack in general. The BIST structure re-
sists any scan based attack by disabling external access to
the scan chains, assuming no bypass modes. This compli-
cates debug and field failure diagnostics. In addition, fault
coverage of BIST is insufficient. Hence, pure BIST solutions
are rarely selected by vendors. The scrambling and modified
scan chain types present an additional countermeasure, but
they are inefficient against the reverse engineering attack.
The attack is still possible in the presence of the aforemen-
tioned structures, but the output of the reverse engineer-
ing will include both the functional and the protection cir-
cuits. The adversary can then distinguish between the two.
Finally, the Secret-free Test solution prevents volatile data
from being exposed but does not prevent reverse engineering
of the design data. Solutions of the types Access Restriction
and Secure Wrapper prevent unauthorized access to scan
chains. Thus, while they are also efficient against reverse
engineering, combined attacks are possible that first target
the authorization mechanism, for example using DPA [18].

Previous work relies on the circuit’s ability to switch bet-
ween mission and scan modes. One of the popular counter-
measures against the scan-based attacks is thus to enforce
reset when switching between the modes [9]. Because the re-
verse engineering attack retrieves static design information
from the scan chains, it is immune to this countermeasure.

5. CONCLUSIONS AND FUTURE WORK
The reverse engineering attack is a threat for devices that

rely on the secrecy of their proprietary algorithms and pro-
tection mechanisms. In this paper, we demonstrated a new
attack that allows for the non-invasive reverse engineering
of an entire device at the logical netlist level. We introdu-
ced new methods that exploit the limited transitive fan-in
property for efficient learning. Using an algorithm that em-
ploys junta learning, we successfully reconstructed a har-
dware implementation of the AES cryptographic function.
Hence, our experimental results show that exploitation of
the scan side channel for reverse engineering is a real threat.
It can give the adversary full or partial information about
the circuit contents. Even partial information may reveal
sufficient data to serve malicious purposes. The presented
attack is also immune to some popular countermeasures.

Our future work will focus on examining algorithms that
are more efficient or are tuned for specific circuit types.
JSoTT ’s scalability makes the presented method potenti-
ally applicable also to large scale SoC devices. Combining
JSoTT with algorithms that exploit additional heuristics
(such as ISoTT) can target complex logic within large de-
vices. Of special interest is when some part of the circuit
is known a priori. Here, the reverse engineering technique
may help in detecting hardware Trojans.

6. ACKNOWLEDGMENTS
This research was partially supported by the Hasso Platt-

ner Institute (HPI).

7. REFERENCES
[1] L. Azriel, R. Ginosar, S. Gueron, and A. Mendelson.

Using Scan Side Channel for Detecting IP Theft. In
HASP 2016, pages 1–8, NY, USA, 2016. ACM Press.

[2] L. Azriel, R. Ginosar, and A. Mendelson. Exploiting
the Scan Side Channel for Reverse Engineering of a

VLSI Device. Technical Report CCIT Report 897,
Technion, Israel Institute of Technology, 2016.

[3] N. Bshouty, J. Jackson, and C. Tamon. More efficient
PAC-learning of DNF with membership queries under
the uniform distribution. Journal of Computer and
System Sciences, 68(1):205–234, Feb 2004.

[4] F. Corno, M. S. Reorda, and G. Squillero. RT-level
ITC’99 benchmarks and first ATPG results. IEEE
Design & Test of Computers, 17(3):44–53, 2000.

[5] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes,
B. Rouzeyre, and I. Verbauwhede. Test Versus
Security: Past and Present. IEEE Transactions on
Emerging Topics in Computing, 2(1):50–62, Mar 2014.

[6] J. Da Rolt, G. Di Natale, M.-L. Flottes, and
B. Rouzeyre. New security threats against chips
containing scan chain structures. IEEE HOST 2011,
pages 110–110, Jun 2011.

[7] P. Damaschke. Adaptive Versus Nonadaptive
Attribute-Efficient Learning. Machine Learning,
41(2):197–215, 2000.

[8] M. El Massad, S. Garg, and M. V. Tripunitara.
Integrated Circuit (IC) Decamouflaging: Reverse
Engineering Camouflaged ICs within Minutes. In
NDSS, 2015.

[9] D. Hely, F. Bancel, M. Flottes, and B. Rouzeyre. Test
Control for Secure Scan Designs. European Test
Symposium (ETS’05), pages 190–195, 2005.

[10] D. Hely, K. Rosenfeld, and R. Karri. Security
challenges during VLSI test. In IEEE 9th
International New Circuits and systems conference,
pages 486–489. Ieee, Jun 2011.

[11] H. Hsing. tiny aes IP project, 2012.

[12] J. Kash, J. Tsang, and D. Knebel. Method and
apparatus for reverse engineering integrated circuits
by monitoring optical emission, Dec 2002.

[13] W. Li, Z. Wasson, and S. A. Seshia. Reverse
Engineering Circuits Using Behavioral Pattern
Mining. In IEEE HOST, pages 83–88, 2012.

[14] O. B. Lupanov. On circuits of functional elements
with delay. Probl. Kibern, (23):43–81, 1970.

[15] K. S. McElvain. Methods and apparatuses for
automatic extraction of finite state machines, 2001.

[16] R. O’Donnell. Analysis of Boolean Functions.
Cambridge University Press, 2014.

[17] D. G. Saab, V. Nagubadi, F. Kocan, and J. Abraham.
Extraction based verification method for off the shelf
integrated circuits. In 1st Asia Symp. on Quality
Electronic Design, pages 396–400. IEEE, Jul 2009.

[18] S. Skorobogatov and C. Woods. Breakthrough silicon
scanning discovers backdoor in military chip. In
E. Prouff and P. Schaumont, editors, CHES 2012,
volume 7428, pages 23–40. Springer, Sep 2012.

[19] R. Torrance and D. James. The State-of-the-Art in IC
Reverse Engineering. In C. Clavier and K. Gaj,
editors, CHES 2009, volume 5747, pages 363–381.
Springer Berlin Heidelberg, Aug 2009.

[20] X. Wang, S. Narasimhan, A. Krishna, and S. Bhunia.
SCARE: Side-Channel Analysis Based Reverse
Engineering for Post-Silicon Validation. In 25th Intl.
Conf. VLSI Design, pages 304–309. IEEE, Jan 2012.

238

