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Abstract— Future multiprocessor chips will integrate many different units, each tailored to a specific computation. When 

designing such a system, the chip architect must decide how to distribute limited system resources such as area, power, and 

energy among the computational units. We extend MultiAmdahl, an analytical optimization technique for resource allocation in 

heterogeneous architectures, for energy optimality under a variety of constant system power scenarios. We conclude that 

reduction in constant system power should be met by reallocating resources from general-purpose computing to heterogeneous 

accelerator-dominated computing, to keep the overall energy consumption at a minimum. We extend this conclusion to offer an 

intuition regarding energy-optimal resource allocation in data center computing.  

Index Terms— Heterogeneous computing, high performance computing, optimal resource allocation, energy optimization, data 

center computing.   

——————————      —————————— 

1 INTRODUCTION 

eterogeneous multiprocessor chips integrate a large 
number of different computational units: these include 
full-blown latency oriented cores for sequential pro-

cessing, massively parallel SIMD accelerators such as vector 
(VPU) or graphic processing (GPU) units, media accelerators, 
and application-specific integrated circuits (ASICs). The last 
are designed and optimized for a particular workload, and 
therefore are much more efficient than general-purpose units 
[4]. 

Heterogeneity also has a price; chips have limited physical 
resources, such as die area or average/peak power/energy. All 
units on the chip compete for the shared resources, and the 
share that each unit receives is limited. When a single chip 
contains multiple different units with different roles, it is up 
to the architect to distribute the resources among the different 
units. To reach an optimal solution, the architect should take 
into account the efficiency of these units as well as the work-
load. 

Fig 1 schematically illustrates the application range and 
power efficiency (performance to power ratio) over this range 
for each computational unit of a heterogeneous chip. For in-
stance, the general-purpose CPU is designed to implement a 
wide range of applications, with relatively low power effi-
ciency, whereas designated accelerators such as a Fast Fourier 
Transform (FFT), Black-Scholes (BSC), or Dense Matrix 
Multiplication (DMM) provide high power efficiency for a 
narrow range of applications.  

In this paper, we extend the MultiAmdahl [12] framework 
for energy optimality under constant system power and study 
its effect on optimal resource allocation in heterogeneous ar-

chitectures. We analyze a high level High Performance Com-
puting (HPC) architecture and present a closed-form solution 
for optimal resource allocation. We then extend this line of 
reasoning to intuit how resources might be allocated in in data 
centers in an energy-optimal manner. Finally, we provide in-
sight into optimal resource distribution in a large scale heter-
ogeneous architecture featuring a number of special purpose 
accelerators, under various levels of constant system power.  

 

 

Fig 1. Power efficiency vs. application range 

The rest of this paper is organized as follows. Section 2 
discusses the resource allocation problem. Section 3 intro-
duces the optimization framework. Section 40 presents the re-
sults of HPC architecture optimization. Section 5 discusses 
optimization of a heterogeneous architecture with many ac-
celerators, and section 6 presents our conclusions. 

2 THE RESOURCE ALLOCATION PROBLEM 

 Consider a heterogeneous system composed of several 
different units, each with a different role. A common resource 
(for example, the die area) is shared among the different units. 
The system architect needs to distribute the resource among 
the available units. Increasing the size of one unit improves 
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its performance, but also force all other units to share a 
smaller area, thus reducing their performance. To find the op-
timal resource allocation, four parameters must be consid-
ered. 

The first parameter is the overall resource constraint. In 
this paper, we focus on the die area constraint. We can also 
introduce additional resource constraints, such as peak power 
or energy. 

The second parameter that must be considered is the accel-
erator function, meaning how the additional resource (e.g., 
area, power, or energy) assigned to a given accelerator is 
translated into a better target performance. For example, dou-
bling the size of a massively parallel vector accelerator (VPU) 
is likely to nearly double its potential performance. A latency-
oriented sequential CPU, however, is not likely to exhibit the 
same improvement when its size is doubled.  

The system architect must also decide how to allocate the 
resource within each unit: how to divide the unit’s area be-
tween the processing unit and the memory, for example [1]. 
Accelerator functions hide these details, always providing the 
optimal output of the unit given the amount of resource it was 
assigned.  

A third parameter of the optimization problem is the work-
load of the system, and especially its distribution among the 
different units. The workload determines how much work is 
assigned to each of the accelerators. In common scenarios, the 
accelerator-functions are known a priori, while specific de-
tails of the workload are only estimated. 

The last parameter is the design goal the system architect 
seeks to optimize for.  

A design constraint must be met, while the design goal pre-
sents one design as preferable to another. A design may have 
several constraints (power, area, memory bandwidth [7]), but 
only a single goal. For example, a real-time system may re-
quire optimization of its performance. On the opposite side, 
as energy-related costs rise, a high-performance computing 
(HPC) system designed for data centers may require optimiz-
ing its energy consumption. 

 

 

Fig 2. MultiAmdahl framework: (a) Code segment execution on a reference 
CPU; (b) Die area division; (c) Accelerator performance; (d) Execution time 
using the accelerators 

3 OPTIMIZATION FRAMEWORK 

In this section, we formulate the optimization problem on 
the basis of the four factors described in the previous section.  

 
Workload — We divide the workload into � different ex-

ecution segments. Each segment represents the aggregated 

amount of work to be executed by a specific accelerator of a 
heterogeneous chip (Fig 2 (a)). We define �� as the execution 
time of segment � on a reference CPU. Thus, the total execu-
tion time of the workload on the reference CPU is ∑ ��

���
��� . 

 
Area Constraint — the chip area is divided among � hard-

ware computational units (see Fig 2(b)), where each unit � ex-
ecutes segment �. We denote by �� the chip area that is allo-
cated to unit �. The sum of the areas assigned to all units is 
bounded by the total chip area �:    

 

� ��

�−1

�=0

= � (1) 

 
Accelerator functions — Accelerator function �� (see Fig 

2(c)) represents the inverted speedup of the ��� accelerator as 
a function of the area �� assigned to the accelerator. There-
fore, using the ��� accelerator, the execution time of segment 
� is �� ∙ ��(��) [12]. When relevant, this function should take 
into account the migration overhead of the appropriate accel-
erator [2]. To simplify the analysis, we assume that the accel-
erator functions are strictly decreasing, convex, and continu-
ously differentiable. A simple form of analytical function that 
satisfies this requirement is a power-law function [12]:  

 

�
�
(��) = ��

� (2) 

 
where �� is the resource assigned to the processor, and α is a 
negative constant coefficient. 

Pollack [5] suggests that the performance of a single-core 
CPU can be modeled as the square root of the assigned area. 
In our notations, α = −0.5 for a full-blown CPU core. On the 
other end of the core complexity scale is a massively parallel 
vector accelerator (VPU), comprising a multitude of baseline 
throughput oriented cores.  We model the performance of 
such a massively parallel accelerator as (slightly) sublinear to 
the number of cores (or resource amount). Sublinear scaling 
reflects the damping effect of inter-core communication [8]. 
In our research, we span the value of α for massively parallel 
accelerators from −1 (“embarrassing” parallelism, where 
performance scales linearly to the number of cores) to −0.75, 
and discover that varying α does not significantly affect the 
outcome of our analysis.    

3.1 Optimizing Delay 

Our first design goal is to minimize the total execution 
time when using accelerators (see Fig 2(d)). Adding the area 
constraint, we arrive at the following optimization problem: 
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This is a convex optimization problem, which can be 
solved using Lagrange multipliers [11]: 

 

Minimize:  �(��, �) =  � ��(��)��

���

���

− �(� ��

���

���

− �) (4) 

 
An optimal solution satisfies: 
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Solving for arbitrary index �: 
 

�′
�
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Solving for arbitrary index �, we obtain the dual formula: 
 

�′
�
������ − � = 0, (7) 

 
and so the optimal solution is obtained when:  
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where �′�(��) is the derivative of the ��� accelerator function, 
�� is the area assigned to this accelerator, and �� is the execu-
tion time of this segment on the reference CPU. 

The intuition behind this rule is that in an optimal solution, 
any infinitesimal addition to the area creates the same im-
provement in the total execution time, regardless of the accel-
erator it is assigned to.  

3.2 Optimizing Energy 

Our second design goal is to minimize the total energy 
consumption when using accelerators. Energy consumption 
of a heterogeneous system can be expressed as follows: 
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(9) 

 
where ��(��) is the dynamic power consumption of the ���  
accelerator, and ���� and ���� are constant system energy and 
power respectively. ���� may include, for example, static 
(leakage) power and DRAM refresh power. On a larger scale, 
���� can also account for cooling, UPS, lighting and other in-
frastructure related power components of data centers.  

Following Chung [4], we model the dynamic power con-
sumption of a unit as a power law of its area: 

 

�
�
(��) = ��

�
 (10) 

 
where �� is the resource assigned to the unit, and β is a posi-
tive constant coefficient. Grochowsky and Annavaram [3] 
suggest that for a single-core CPU, β = 0.875. For a mas-
sively parallel accelerator, however, we scale power con-
sumption superlinearly to the number of cores (or resource 
amount). Such scaling reflects the excess power spent on in-
ter-core communication, which itself scales superlinearly to 
the number of cores [8]. In our research, we span the value of 
β for massively parallel accelerators from 1 to 1.25 and dis-
cover that varying  β does not significantly change the out-
come of our analysis.    

Adding the area constraint, we can write the energy opti-
mization problem as follows: 

 

Minimize:   
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Similarly to (8), the optimal solution is obtained when: 
 

{[��(��) + ����]��(��)}′�� = {[������ + ����]������}′�� (12) 

 

4 OPTIMIZING A HETEROGENEOUS HPC 

ARCHITECTURE 

Consider a typical HPC architecture consisting of a num-
ber of general purpose CPU cores, a massively parallel vector 
accelerator, and memory. This top level organization is 
shared by Intel Core™, NVidia Echelon, and other contem-
porary HPC architectures. In this section, we apply the Mul-
tiAmdahl framework to optimize the allocation of the chip 
area resource between the general purpose CPU cores and the 
massively parallel vector accelerator (VPU).  

Equations (12) and (1) can be rewritten to reflect the area 
allocation between a���  and a��� : 
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where ���� = ���� + ����, ���� = ���� + ����, ���� =
−0.5, ���� = 0.875, −1 ≥ ���� ≥ −0.75 and 1 ≤ ���� ≤
1.25.  

The intuition behind (13) is that in an optimal solution, any 
infinitesimal addition to the area creates the same improve-
ment in the total energy consumption (dynamic plus system), 
regardless of the accelerator it is assigned to. 

Solving (13) for ���� and ���� yields the energy-optimal 
partitioning of the chip area resource to the CPU and VPU. 
Fig 3 shows the normalized energy of an HPC as a function 



 

 

of ���� relative to the total chip area budget � for different 
levels of constant system power. We assume ����=2%, 10%, 
40% and 95% of the total power budget (which is derived 
from the chip area budget � (10)), and ���� = ���� 
(Amdahl’s parallelization factor of 0.5).  For each ���� level, 
we show the optimal CPU area allocation (connected by the 
red curve).  

 

 

Fig 3. Normalized objective (cost) function vs. area allocation for CPU for 
different ����  

When ���� is very low (2% of the system power budget), 
the energy-optimal area allocation to the CPU is also very 
low. The intuition behind this is as follows: to conserve the 
overall energy, the least power efficient unit (the unit with the 
highest ��(��)��(��), i.e., the CPU) should run as slowly as 
possible. This is achieved by allocating the smallest possible 
area budget to it. As ���� increases, the optimal area allocation 
to the CPU grows as well. This happens because with growing 
����, the relative weight of the second summand of (9) also 
increases. To reduce this component of the total energy con-
sumption, the execution needs to be completed as soon as pos-
sible; hence, the slowest unit (CPU) needs to be sped up, 
which is achieved by reducing ����(����), by increasing 
����.  

Eventually, if almost the entire energy budget is spent on 
system infrastructure as opposed to computation, the optimal 
CPU allocation approaches the optimal point of minimal de-
lay (Section 3.1), which is also shown in Fig 3 for reference.  

The relationship between the optimal area allocation in a 
heterogeneous HPC architecture and constant system power 
is summarized in Fig 4. The energy-optimal CPU area alloca-
tion increases (and VPU area decreases) as system power 
grows, approaching the delay-optimal area allocation. Gener-
ally, the following holds: 
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����→�

���� ��� ������ = ���� ��� ����� (14) 

 

 

Fig 4. Area allocation in HPC architecture vs. constant system power 

 
Next we consider the impact of this result on area optimi-

zation in future heterogeneous HPC architectures and provide 
an intuition as to how to allocate resources in data center com-
puting.  

4.1 Effect of System Power on Resource Allocation 
in HPC Architecture 

In addition to its computational part (CPU and VPU), an 
HPC architecture features large shared memory. Today, such 
memory is typically DRAM, increasingly integrated with the 
computing die in the same package (for example, using 2.5D 
or 3D integration), as depicted in Fig 5(a). 3D DRAM may 
exhibit fairly significant static power (leakage and refresh), 
potentially biasing the optimal area allocation between the 
CPU and VPU in favor of the CPU (cf. Fig 4).  

However, as CMOS feature scaling slows down, conven-
tional memory technology such as DRAM experiences scala-
bility problems. In response, resistive memory (ReRAM) 
technologies are being explored. ReRAM stores information 
by modulating the resistance of nanoscale storage elements. 
One of ReRAM’s noticeable advantages is non-volatility, 
which obviates the need for refresh and provides near-zero 
leakage power.   

  

 

Fig 5. Effect of constant system power on resource allocation in HPC 
architecture 

If ReRAM replaces DRAM in the HPC architecture in 
question, as depicted in Fig 5(b), the system power is likely 
to decrease quite considerably. To keep the resulting design 
at the point of optimal energy, a reallocation of the area re-
source is required. Such a new allocation is likely to favor 
VPU at the expense of CPU. We believe this insight could be 
quite important for computer architects.    



 

 

4.2 Heterogeneity in Data Centers 

This line of reasoning can be expanded from an HPC mod-
ule to the level of a data center. The power consumption of a 
typical data center consists of IT power (spent on computation 
and data retention) and infrastructure power (cooling, UPS, 
lighting, power distribution etc.). The infrastructure power 
can be quite significant: cooling power alone may reach 45% 
of the entire power budget of a data center. 

Similarly to IT power, which consists of dynamic and 
static (leakage) components, the infrastructure power can also 
be divided into two components. The first is constant power 
(such as lighting). More significant, however, is the variable 
component of the infrastructure power, which depends on IT 
power (for example, cooling power, which is almost linearly 
dependent on IT power). To reflect this division within the 
total data center energy, we rewrite (9) as follows: 
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(15) 

where ��������������� = ������ + �(��(��)), where ������ is 
the constant component of the infrastructure power, while the 
IT power-dependent component �(��(��)) is absorbed in 
���(��), where � ≥ 1 is constant.    

Applying our energy optimization framework to (15) leads 
to the following conclusion. If the constant component of data 
center energy is significant, the energy-optimal data center 
should favor general-purpose computing (full-blown CPU 
cores). However, if the constant power is reduced, the energy-
optimal point shifts towards the heterogeneous approach.  

In general, the challenge of minimizing the constant sys-
tem power should be met by reallocating resources from gen-
eral-purpose CPU based computing to heterogeneous accel-
erator based computing, to keep the overall energy consump-
tion of the data center at a minimum.   

5 OPTIMIZING A MULTI-ACCELERATOR 

HETEROGENEOUS ARCHITECTURE 

While in the previous section we considered optimal re-
source allocation between a general purpose CPU and a mas-
sively parallel vector accelerator, in this section we focus on 
a heterogeneous architecture featuring a general purpose CPU 
and a multitude of ASIC accelerators. We follow Chung et al. 
[4] and consider an architecture composed of a CPU and 
Dense Matrix Multiplication, FFT16, FFT 1024, and Black-
Scholes option pricing accelerators. The workload is com-
posed of equal-runtime dense matrix multiplication, FFT16, 
FFT 1024 and Black-Scholes routines [4], where 10% of the 
runtime of each routine is assumed to be executed on the CPU 
and the rest on their dedicated accelerators respectively. As 
earlier, only one unit in the chip is active at a time. The accel-
erator functions take the form:   

�
�
(��) =

��
�

��
 (16) 

where the area efficiency factor �� is as provided by Chung et 

al. [4], and summarized in TABLE 1.  
 

TABLE 1 
ACCELERATOR EFFICIENCIES [4] 

Benchmark Area Efficiency Factor �� 

Dense Matrix Multiplication 39 

FFT1024 692 

FFT16 2804 

BlackScholes 24 

CPU 1 

 
Fig 6 presents the energy-optimal area allocation in such a 

heterogeneous chip for different values of constant system 
power. When ���� is very low, the allocation to the most area-
inefficient unit (the CPU) is minimal. The rest of the area 
budget is assigned to the accelerators in accordance with their 
area efficiency: the largest portion is allocated to the most 
area-efficient accelerator, and so on. 

However, as system power increases, the energy-optimal 
allocation of area resources changes significantly. The alloca-
tion to area-inefficient units grows very quickly (with most 
area being eventually allocated to the CPU), while the alloca-
tion to the most area-efficient accelerator drops at the same 
rate. 

The rightmost column of the Fig 6 shows the delay-opti-
mal area allocation (Section 3.1 as well as [12]). Similarly to 
the HPC architecture case, the energy-optimal area allocation 
in the heterogeneous multi-accelerator architecture approxi-
mates the delay-optimal allocation as system power increases.        

 
 

 

Fig 6. Energy-optimal allocation vs. ����; the rightmost column shows the 

delay-optimal allocation [12]. 

6 CONCLUSIONS 

We have extended the MultiAmdahl analytical delay opti-
mization framework to energy-optimal resource allocation in 
heterogeneous architectures of processors and data centers. 
Our technique relies on modeling the performance and power 
consumption of each unit as a function of the resources it uses, 
and setting the limited resource as an optimization constraint. 
We then find the optimal solution using Lagrange multipliers. 
The following contributions with regard to the MultiAmdahl 
framework are made: 

1. We illustrate how the optimal performance or energy 



 

 

consumption under a resource constraint is achieved when the 
absolute marginal outcome is equal for all computing mod-
ules. 

2. We introduce a closed form analytical solution for opti-
mal resource allocation in heterogeneous architectures. 

3. We observe that as the total system power increases, the 
optimal energy allocation approaches the allocation for mini-
mum delay. 

4. We conclude that the challenge of minimizing the con-
stant system power should be met by reallocating resources 
from general-purpose CPU based computing to heterogene-
ous accelerator based computing, to keep the overall energy 
consumption at a minimum. 

5. We show how the change in constant system power, for 
example, the transitioning from DRAM to Resistive RAM, 
may affect the resource allocation in High Performance Com-
puting architectures. 

6. We apply similar reasoning to intuit how resources 
might be allocated in data centers in an energy-optimal man-
ner: as the power efficiency of data centers improves, they 
should shift away from general purpose computing to hetero-
geneous accelerator-dominated computing, to maintain en-
ergy optimality. 

 
In summary, the MultiAmdahl framework provides a wide 

range of optimization opportunities, and a multi-functional 
tool for an early stage analytic exploration of heterogeneous 
computing design space.    
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