
SELF-TIMED ARCHITECTURE OF A REDUCED INSTRUCTION SET COMPUTER

Ilana David1, Ran Ginosar1 , 2 , and Michael Yoeli2

1Department of Electrical Engineering
2Department of Computer Science

Technion - Israel Institute of Technology
Haifa 32000

ABSTRACT
An advanced Self-Timed Reduced Instruction Set Computer (ST-RISC)
architecture is described. It is designed hierarchically, and is formally
specified functionally at the various levels by a CSP-like language. The
architectural features include decoupled data and branch processors,
delayed branches with variable delay, unified data path and control,
efficient non-redundant handshaking protocols, and novel self-timed build-
ing blocks such as combinational logic, master-slave registers, finite state
machines, and FIFO elements.

Keywords: Asyncronous systems, computer architecture, high-level synthesis, reduce instruction

set computer, self-timed.

1. Introduction

The design and construction of an asynchronous computer is relatively a complex task.

Asynchronous design of digital circuits is not as straightforward as synchronous design; the

former refrains from the relaxing assumptions and external enforcement of timing available with

clocked systems. While synchronous implementations of digital systems prevail today, self-

timed asynchronous designs present an attractive alternative, offering the potential for faster sys-

tems, correct-by-construction synthesis, and formal verification.

Digital hardware systems consist of basic building blocks, such as combinational logic,

registers, and finite state machines. In previous reports we have described the design of self-

- 2 -

timed combinational logic, master-slave registers, finite state machines, and first-in-first-out

queue elements in a formal manner, while stressing efficient implementations [DGY92a,

DGY92b, Da89]. In this paper we present the architecture of a self-timed reduced instruction set

computer (ST-RISC). It is described as a hierarchical network of communicating sub-systems;

each sub-system is either a basic building block of the above-mentioned types, or is itself a net-

work of sub-components.

ST-RISC, as well as all its subsystems, are self-timed, in the sense that they are (1) asyn-

chronous, (2) delay-insensitive, and (3) they generate completion signals. Delay insensitivity

here means that their correct operation is independent of any assumption on the delays of the

components or wires.

ST-RISC incorporates advanced architectural concepts, which are designed to enhance its

performance. There are two concurrently executing units - the data processor and the branch pro-

cessor. A novel scheme of delayed branches reduces ‘‘pipeline suspensions.’’ Control and data-

path are unified together. The various components intercommunicate over efficient channels,

sometimes containing FIFO decoupling buffers. The architecture is presented as a sequence of

increasingly-detailed specifications, and as such it yields to formal verification. The architecture

and its specification are designed with automatic synthesis in mind.

The pioneer asynchronous processor architecture was published by Martin et al. [Ma89a].

A CSP-like specification language was introduced (which has largely been adopted by us), and a

synthesis method was presented [Ma89b]. While the emphasis was on automatic compilation, the

architecture was rather simple. We further compare our architecture with Martin’s in Section 9.

Other methods for implementing double-rail, self-timed circuits, can be found in references

[Se80, Si81, An86, La87 and Ha84], as well as [DGY92a] and [DGY92b]. Extensive research on

the synthesis of delay-insensitive circuits is also reported in [Chu87, MFR85, Ma86, Rem85,

- 3 -

Sn85, Eb87].

Section 2 presents the building blocks. The processor is functionally defined in Section 3.

Section 4 shows how ST-RISC is decomposed hierarchically. Sections 5 and 6 describe the data

and branch processors, respectively. The FIFO buffers and the forks are discussed in Section 7.

Delayed branches are presented in Section 8, and the significance of this architecture is discussed

in Section 9. The Appendix defines the specification language used in the paper.

2. Self-Timed Modules

General methods for efficiently implementing combinational logic (CL), master-slave regis-

ters (MS) and finite state machines (FSM) as self-timed logic modules are described in references

[DGY92a], [DGY92b], and [DGY89b]. A double-rail code is used to represent the ternary logic:

the three values 0, U (unde f ined) and 1 of any line are represented by 10, 00, and 01 respectively.

The CL module [DGY92a] implements any family of Boolean functions as a self-timed cir-

cuit. In simple CL modules, all the inputs become defined before the outputs are generated, and

once the outputs are defined, all the inputs must become undefined before any of the outputs

disappears (becomes undefined). In more general CL modules, these restrictions may apply to

predefined subsets of the inputs.

MS [DGY92b] is a self-timed master-slave register. Its operation can be described as fol-

lows: When all the inputs become defined, the outputs become undefined, and the inputs are

latched into the register; when all the inputs become undefined, the outputs become defined.

The FSM [DGY92b] is a self-timed finite state machine. It consists of a CL, which imple-

ments the logic functions of the state table, and an MS for the feedback register. When the inputs

(or some predefined subsets thereof) become defined, the outputs and the next state are generated

- 4 -

and the next-state is saved in the MS register. When the inputs become undefined, the outputs

become undefined, and the saved ’next-state’ becomes the output of the MS register, serving as

the ’present state’ for the next cycle.

3. Specification of the Processor

The instruction set of ST-RISC (Table I) contains three types of instructions: ALU (arith-

metic, logic and shift), memory (load and store) and flow-control (jump and conditional branch).

Separate memories, DMEM and IMEM, are used for data and instructions. There are 16 16-bit

registers in the register file (RF), one of which (R 0) is hard-wired zero.

The program in Figure 1 specifies the sequential behavior of the processor. The program

notation, which is a modified version of Martin’s [Ma89b], is described in the Appendix.

In this program, the next instruction is loaded from the instruction memory imem onto vari-

able b. The fields of b contain the op-code (b. op), the two source registers (b. r s1, b. r s2) and the

destination register (b. r d). R s1, r s2 and r d serve as pointers to the register file (r f). In ldi,

_ __
Arithmetic ADD R s1 , R s2 , R d R d ← R s1 + R s2, set CC

SUB R s1 , R s2 , R d R d ← R s1 − R s2, set CC
XOR R s1 , R s2 , R d R d ← R s1 xor R s2, set CC
AND R s1 , R s2 , R d R d ← R s1 & R s2, set CC
OR R s1 , R s2 , R d R d ← R s1 | R s2, set CC_ __

Shift SLL R s1 , R d R d ← R s1 + R s1, set CC
SRL R s1 , R d R d ← logical_right_shift(R s1), set CC
SRA R s1 , R d R d ← arithmetic_right_shift(R s1), set CC_ __

Load LD R s2 , R d R d ← M[R s2]
and LDI R d , OPERAND R d ← OPERAND
Store STORE R s1 , R s2 M[R s2] ← R s1_ __
Flow JUMP Address PC ← Address
Control CBRANCH COND,address if (COND) { PC ← address }_ __ 



















































Table 1: ST-RISC Instruction Set

- 5 -

_ __

risc _ ___ ___ __
* [b : = imem (pc) ;

  ldi (b. op) → r f (b. r d) : = b. operand , pc : = pc + 1]]

  ld (b. op) → r f (b. r d) : = dmem (b. r s1) , pc : = pc + 1

  store (b. op) → dmem (b. r d) : = r f (b. r s1) , pc : = pc + 1

  cbranch (b. op) →
  cond (b. op , cc) → pc : = b. addr]

[¬cond (b. op , cc) → pc : = pc + 1

  j ump (b. op) → pc : = b. addr

  shi f t (b. op) → (r f (b. r d) , cc) : = b. op (r f (b. r s1)) , pc : = pc + 1

[arith (b. op) → (r f (b. r d) , cc) : = b. op (r f (b. r s1) , r f (b. r s2)) , pc : = pc + 1

Figure 1. ST-RISC sequential program
_ __

j ump, and cbranch, b’s bits are reorganized to provide the operands, the address, and the address

and condition, respectively. The instruction memory imem and the data memory dmem are

represented as arrays; the program counter pc points into imem, while r s1 and r d index dmem (in

ld, ldi, and store). Cc holds the condition code. The cond function determines whether the

branch condition holds.

4. Decomposition of ST-RISC into Communicating Processes

ST-RISC consists of two main components, the branch processor (BP) and the

data processor (DP), and four FIFOs. In Figure 2 it is shown together with the data and instruc-

tion memories. Both BP and DP communicate with IMEM, while only DP is connected to

DMEM. The main program of Fig. 1 is decomposed accordingly into the processes bp (Fig. 3),

dp (Fig. 4), and the FIFO programs (Section 7). Figure 5 shows the memory processes. All these

- 6 -

processes are active concurrently. Note that BP and DP are independent, except for the condition

code which is generated by DP and is used by BP for conditional branches.

Not all communication channels in Figure 2 are alike. Some are based on the conventional 4-

phase handshake protocol; they comprise double-rail data lines and an acknowledgement line.

The communication operation is denoted X!a and X?b in Figures 3-5. Others (ack − less chan-

nels) do not require acknowledgement signals, and are denoted X! !a and X? ?b in the programs.

The correct operation of the system is guaranteed nevertheless, and is usually achieved by means

of acknowledgement signals on other lines. For example, in Figures 2 and 3 ADROUT is an

ack − less channel but DOUT is not; during memory write operation, acknowledgement on DOUT

serves to acknowledge ADROUT as well. The purpose of ack − less channels is to eliminate

redundant overhead. Further, in an efficient design an ack − less channel is treated as such in all

cases.

Note that channel I in Figure 2 seemingly consists of a fork. Acknowledgements on that channel

are resolved by the two FIFOs F1 and F3, as described in Section 7.

It can be proven formally that the two concurrent programs, dp and bp, together with the

programs for the memories and the FIFO queues, are functionally equivalent to the main program

risc (Figure 1).

In Section 8 we describe an improved architecture of the branch processor, which incor-

porates delayed branches.

5. The Data Processor

We continue the decomposition procedure, hierarchically. Figure 6 describes the structure

of the data processor. The main components of DP are the register file (RF) , the arithmetic-logic

- 7 -

_ __

AI

CONDI COND

F3 F4

F2

F1

DIN

DOUT

ADROUT

RW

ADRIB
ID

IMEM

BPDP
DMEM

Figure 2. ST-RISC block diagram
_ __

_ __

dp _ ___ ___ __
* [ID ? b;

  ldi (b. op) → r f (b. r d) : = b. operand]]

  ld (b. op) → ADROUT ! ! r f (b. r s1) , RW ! ! ′r′ , DIN ? ? r f (b. r d)

  store (b. op) → ADROUT ! ! r f (b. r s1) , DOUT ! r f (b. r s2) , RW ! ! ′w′
  cbranch (b. op) → COND ! cond(b. op ,cc)

  j ump (b. op) → nop

  shi f t (b. op) → (r f (b. r d) , cc) : = b. op (r f (b. r s1))

[arith (b. op) → (r f (b. r d) , cc) : = b. op (r f (b. r s1) , r f (b. r s2))

Figure 3. The data-processor program
_ __

- 8 -

_ __

bp _ ___ ___ __
* [IB ? d;

ADR ! pc]

  cbranch (d. op) → CONDI?c;

  c → pc: = d. addr]]

[¬c → pc: = pc + 1

  j ump (d. op) → pc : = d. addr

[¬branch(d. op) → pc : = pc + 1

Figure 4. The branch processor program
_ __

_ __

imem _ ___ ___ __
* [A ? ? addr ; I ! ! imem(addr)]

dmem _ ___ ___ __
* [[ADROUT ? ? addr , RW ? ? rw] ;

  write(rw) → DOUT ? data ; dmem(addr) : = data]]

[read(rw) → DIN ! ! dmem(addr)

Figure 5. The memory programs

_ __

unit (ALU) and a decoder (DECOD). The instruction word is read from the input channel ID into

the decoder which generates the outputs R s1, R s2, R d and CMD, needed to operate units RF and

ALU. If the command is a conditional-branch, the decoder indicates it via BOUT and unit BC

indicates on its COND output whether the condition is true or false. When the inputs R s1, R s2 of

RF become defined, it outputs the contents of the corresponding registers onto BUSA and BUSB

respectively; when R d and BUSC are defined, RF writes the contents of BUSC into register R d .

BUSC comes from a selector SEL, which selects a word either from the ALU output D (alu com-

mand), the data-memory input DIN (ld command), or the DECOD output OP (ldi command). The

- 9 -

ALU unit performs an arithmetic or logic operation according to input CMD, and generates a

result word D and a condition code CA. The CC register holds the condition code to be used in

the next instruction.

The register file is implemented as a group of MS registers, with additional decoders and

selectors. CC is also an MS. All the other DP components, namely ALU, SEL, BC, and DECOD,

may be implemented as CL blocks. Some of them are described as processes in Figure 7.

6. The Branch Processor

_ __

alu
ldi
ld

R s2

OP

BOUT

alu

ldi

ld

ID

R d

R s1

CMD

DOUT

F2

RW
ADROUT

CA

C

BUSC

DIN

D

BUSB

BUSA

COND

SEL

CC

BC

ALURF

DECOD

Figure 6. The data processor

_ __

- 10 -

_ __

decod _ ___ ___ __
* [ID ? b;

  ldi (b. op) → OPERAND ! ! b. operand , R d ! !b. r d , ldi! !′ ldi′]

  ld (b. op) → R s2 ! ! b. r s2 , R d ! !b. r d , RW ! ! ′r′ , ld! !′ ld′

  store (b. op) → R s1 ! ! b. r s1 , R s2 ! !b. r s2 , RW ! ! ′w′
  cbranch (b. op) → BOUT ! condit(b. op)

  j ump (b. op) → R s1 ! !b. r s1 , R s2 ! !b. r s2 , R d ! ! ′0′ , CMD ! ! ′nop′ , alu! !′alu′

[alu (b. op) → R s1 ! ! b. r s1 , R s2 ! ! b. r s2 , R d ! ! b. r d , CMD ! ! b. cmd , alu! !′alu′

bc _ ___ ___ __
* [[BOUT ? b , C ? ?c] ;COND ! cond(b ,c)]

r f _ ___ ___ __
* [[R s1 ? ? r s1 ; BUSA ! ! r f (r s1)] , [R s2 ? ? r s2 ; BUSB ! ! r f (r s2)] , [R d ? ? r d ; BUSC ?r f (r d)]]

alu _ ___ ___ __
* [(BUSA? ?op1 , BUSB? ?op2 , CMD? ?cmd) ; D ! ! alu f (cmd, op1 , op2) , CA ! ! cond f (cmd, op1 , op2)]

Figure 7. The processes of the data processor
_ __

- 11 -

_ __

IB

W

CONDI

ADR

IL

LI

BADR

PC

BCOND

BDEC

Figure 8. The branch processor

_ __

Figure 8 describes the structure of the branch processor. It comprises two decoders (BDEC

and BCOND) and a counter (PC). BDEC determines, according to the op-code of the instruction

word IB, whether the counter PC should be incremented, or, if the instruction is either j ump or

cbranch, loaded with a new address. Recall that the branch address is one of the fields of the

instruction word. Unit BCOND is operational only during conditional branch instructions. It

waits for the condition bit CONDI to arrive from the data processor and then decides whether the

program counter should be incremented or loaded with the jump address. Both BDEC and

BCOND are CL units. PC is a loadable counter, which is a special form of FSM. Figure 9 con-

tains the programs for the BP components.

- 12 -

_ __

bdec _ ___ ___ __
* [IB ? d;

  cbranch (d. op) → W ! , BADR! !d. addr]]

  j ump (d. op) → LI ! ′ load′ , BADR! !d. addr

[¬ j ump(d. op) ∠ ¬cbranch(d. op) → LI ! ′ incr′

bcond _ ___ ___ __
* [[W ? , CONDI ? cond] ;

  ¬cond → IL ! ′ incr′]]

[cond → IL ! ′ load′

pc _ ___ ___ __
* [[[LI ? il]

  [IL ? il]] ;

  load(il) → BADR ? ? pc] ; ADR ! pc]

[incr(il) → pc: = pc + 1

Figure 9. The processes of the branch processor
_ __

7. The FIFO

The main components of ST-RISC (memories, DP, BP) communicate through self-timed

FIFOs, which serve as decoupling buffers. The self-timed FIFO element is described in reference

[Da89]. A four-stage FIFO is shown in Figure 10. Its behavior may be described as follows: An

empty FIFO contains only spacers (unde f ined values, coded 00 in double-rail). As long as there

is room in the queue, valid data and spacer words enter the FIFO alternatingly through its input

port Din. The ack line turns "1" as soon as a spacer has entered the FIFO (meaning the FIFO is

ready for a data word), and it turns "0" after a valid data word has entered (meaning that the FIFO

is ready for a spacer). When the receiving unit is ready, it issues "1" on the read line; as a result,

the data word at the front of the queue moves to Dout, and all data and spacers inside the FIFO

are shifted one place towards the output stage. When the read line becomes "0," the next spacer

- 13 -

moves to the output and again all data and spacers are shifted towards the output.

The FIFO F1 (Figure 2) holds the n next instructions. Instructions are put on this queue by

IMEM and are taken out by the data processor DP. The length of this FIFO queue is unspecified.

FIFO F2 is of length 3. The data processor puts the bit COND into it, and the bit is stored

until the branch processor takes it out. If F2 were of length 2 only, DP would be delayed after

writing into it and until the value was drawn by BP. At length 3, DP and BP are decoupled.

FIFOs F3 and F4 are of length 2 each. They connect IMEM and BP, and implement the fork

on channel I, as shown in Figure 11. F3 transfers the instruction word from IMEM to BP, while

F4 transfers the next address from BP to IMEM. Once an instruction has been received by F3

(and F1), the address is removed from channel A. Once the instruction is removed from channel I,

the next address is provided. Channels A and I are ack − less, and the whole structure is designed

to speed up instruction fetches.

8. Delayed Branch

_ __

read

Dout
1

Dout
0

Din
1

Din
0

ack

C

C

C

C

C

C

C

C

Figure 10: A four-stage self-timed FIFO

_ __

- 14 -

_ __

F3 #1
F3 #2

F4 #2
F4 #1

ack

read

read

ack

Instructions Instruction address

ack DP

to DP

BP

IMEM

c

Figure 11: Instruction fetch and fork FIFO organization

_ __

Delayed branches have been devised for synchronous processors to eliminate pipeline

suspensions due to branches [Ka84]. Asynchronous processors may suffer similar performance

degradation. In this section we show how a novel form of delayed branches, and a modified

branch processor, improve the ST-RISC efficiency.

With delayed branches, compilers for synchronous systems delay the execution of branch

instructions for a constant number of branch-independent instructions. In ST-RISC architecture,

the execution of the branch instruction can be delayed for a variable number of instructions. The

compiler can relocate any number of instructions which do not affect the branch by moving them

beyond the branch instruction. The last relocated instruction is marked with a trailer bit. The

purpose of this variable-delay delayed branch is to defer the branch as long as is permissible, in

hope that by the time the branch is to be executed all relevant conditions will have already been

computed and transferred to the branch processor.

- 15 -

The structure of the branch processor is changed as follows (Figures 12-14). A register

(BR) is added to save the branch address (BADR). In addition, the decoder BDEC checks the

trailer bit (d. t in Figures 13 and 14) in each instruction. If this bit is on, BP must wait for the

CONDI bit coming from DP before it continues its operation. According to the value of CONDI,

BCOND instructs the PC to either load the next address from BROUT or just increment the

address.

Note that for formal verification of this modified architecture versus the program of Figure

1, the latter has to be modified as well. On the other hand, note that the modular design of ST-

RISC allows a substantial modification of BP without even touching DP.

9. Discussion and Conclusions

We have presented a complete hierarchical architecture of an advanced self-timed processor.

Three attributes make ST-RISC self-timed: First, it is asynchronous, i.e. there is no clock to deter-

mine timing. Second, it is delay insensitive, i.e. no assumption is made regarding the delays in

either the components or the wires. Third, the system, as well as each and every sub-system, gen-

erate completion signals. ST-RISC is based on double-rail implementation of ternary logic.

Advantages of self-timed architectures include the avoidance of clock-related problems such as

clock skews and synchronization failures, and the simplification of the complex task of timing

design and verification. In addition, while synchronous systems are timed according to worst pro-

pagation delays, self-timed elements may work faster on the average since they signal when

results are ready.

The guiding principles in the design of ST-RISC include the elimination of serial

bottlenecks, the decomposition into as many concurrently operating modules as possible, and the

reduction of interdependencies among the modules. Nine architectural and design features

characterize ST-RISC. Most of them are applied to self-timed processor design for the first time:

- 16 -

_ __

BROUT

BR

IB

RD

LR

LI

W

CONDI

ADR

IL

BADR

PC

BCOND

BDEC

Figure 12. The delayed-branch branch processor (substituting Figure 8)

_ __

- 17 -

_ __

bp _ ___ ___ __
* [IB ? d;

ADR ! pc]

  d. t → CONDI?c ;

c → pc: = br]]

[¬c → pc: = pc + 1

  ¬ d. t ∠ cbranch(d. op) → br : = d. addr , pc: = pc + 1

  ¬d. t ∠ j ump (d. op) → pc : = d. addr

[¬d. t ∠ ¬branch(d. op) → pc : = pc + 1

Figure 13. The delayed-branch branch processor program (substituting Figure 4)
_ __

- 18 -

_ __

bdec _ ___ ___ __
* [IB ? d;

  d. t → W ! , RD ! ! ′r′]]

  ¬d. t ∠ cbranch (d. op) → LI ! ′ incr′ , LR ! ! ′ l′]]

  ¬d. t ∠ j ump (d. op) → LI ! ′ load′ , LR ! ! ′ l′ , RD ! ! ′r′ , BADR ! ! d. addr

[¬d. t ∠ ¬ j ump(d. op) ∠ ¬cbranch(d. op) → LI ! ′ incr′

bcond _ ___ ___ __
* [[W ? , CONDI ? cond] ;

  ¬cond → IL ! ′ incr′]]

[cond → IL ! ′ load′

pc _ ___ ___ __
* [[[LI ? il]

  [IL ? il]] ;

  load(il) → BROUT ? ? pc] ; ADR ! pc]

[incr(il) → pc: = pc + 1

br _ ___ ___ __
* [LR ? ? l → BADR ? ? b , RD ? ? r → BROUT ! ! b]

Figure 14. The processes of the delayed-branch branch processor (substituting Figure 9)
_ __

(1) The processor is decomposed into separate data processor and branch processor. They

intercommunicate only during conditional branch instructions. This is similar to the decom-

position of synchronous processors into instruction and execution units.

(2) Delayed branches are introduced. Unlike synchronous processors, we take advantage of the

increased flexibility and modularity of this architecture and achieve a variable length of

delay.

(3) In contrast with most other architectures, data-path and control are not separated. While

such separation is well understood for general purpose processors, it is a rather special case

and is not suitable for general architectural synthesis from behavioral specifications. The

- 19 -

unified architecture resembles the data flow approach.

(4) Novel self-timed FIFO buffers are used to decouple the various parts of the processor.

(5) In addition to conventional four-phase handshaking channels, we employ ack − less chan-

nels to remove redundant control signals. They are enclosed within sub-systems that guaran-

tee correct operation. This helps alleviate one of the difficulties of self-timed designs,

namely handshaking overhead.

(6) Most channels are point-to-point. When a fork is required, it is achieved with complete

self-timed signaling.

(7) In accordance with the above point, ST-RISC does not use any global shared bus to connect

the various elements. This helps to avoid possible bottlenecks.

(8) The design is modular. As a result, both types of branch processors (with and without

delayed branches) can be used with exactly the same data processor.

(9) The processor is specified hierarchically by functional programs, written in a CSP-like

language (adopted from [Ma89b]). This is done in order to facilitate both automatic syn-

thesis and formal verification.

The pioneering work in this field was done by Martin. An asynchronous processor was designed

and fabricated [Ma89a], applying novel synthesis and compilation techniques [Ma89b]. Martin

describes the communicating processes rather elegantly with the aid of a CSP-like language.

While the specification language and the compilation techniques are quite effective, the computer

architecture is very basic. Compared to the points above, there is but one processing unit, there

are no delayed branches, control is separated from the data path, the various components are

tightly coupled, and a global shared bus is used. The more advanced features include the use of

probes and lazy-active channels to enhance efficiency.

- 20 -

The goals of this research are twofold - to investigate efficient self-timed processor architec-

tures, and to strive towards automatic synthesis and formal verification of such architectures. ST-

RISC is an advanced architecture, and it has been designed and described in an orderly, formal,

hierarchical manner, amenable to both algorithmic generation and formal verification.

Appendix: The Program Notation

The first part of our program notation, inspired by Hoare’s CSP [Ho78], is taken over from

[Ma89b].

The selection command [G 1 → S 1   . . .   G n → S n] where G 1 ... G n are predicates or

‘‘guards’’ (boolean expressions) and S 1 ... S n are program parts, has the following meaning: wait

until one of the G i holds, then execute the program S i . In our self-timed systems, guards are true

mutually exclusive.

The repetition command: * [G 1 → S 1   . . .   G n → S n], where G 1 ... G n are predi-

cates (boolean expressions) and S 1 ... S n are program parts, has the following meaning: repeat-

edly select some i for which G i holds, then execute S i . If none of the G i holds, the repetition

command ends.

* [S] stands for "repeat S forever"; [G] stand for "wait until G holds" (this is equivalent to

[G → skip]).

S1 ; S2 stands for execute program S1, then execute S2; S1 , S2 means "execute S1 and

S2 in any order".

The following communication commands are particularly tailored towards our self-timed

double-rail system.

- 21 -

The processes communicate via double-rail data lines and single-rail acknowledgment lines.

Let process P1 communicate with process P2 via channel X. Let a be a variable of process P1 and

b a variable of process P2. We denote the following output sequence produced by process P1 as

X ! a:

wait for ack = 0 ; set X: = a; wait for ack = 1 ; set X unde f ined;

We denote the following input sequence by process P2 as X ? b :

wait for X be de f ined; set b: = X; set ack = 1 ; wait for X become unde f ined; set b unde f ined; set ack = 0

X! stands for X!φ where φ is any defined value.

X? is defined accordingly; the defined value φ is not stored.

Communication between components can take place without acknowledgement signals. We

denote as X ! ! a the following output sequence produced by process P1:

When a becomes de f ined , set X: = a; when a is unde f ined , set X unde f ined

Similarly, we denote as X ? ? b the following input sequence by process P2:

When X becomes de f ined , set b: = X; when X becomes unde f ined , set b unde f ined

- 22 -

References

[An86] Anantharaman T.S., ‘‘A Delay Insensitive Regular Expression Recognizer,’’ IEEE
VLSI Technical Bulletin, September 86.

[Chu87] Chu, T.A., ‘‘Synthesis of Self-Timed VLSI Circuits from Graph-theoretic
Specifications’’, PhD thesis, MIT, 1987.

[DGY92a] David I., Ginosar R. and Yoeli M., ‘‘An Efficient Implementation of Boolean Func-
tions as Self-Timed circuits,’’ IEEE Trans. on Computers, January 1992, pp 2-11.

[DGY92b] David I., Ginosar R. and Yoeli M., ‘‘Implementing Sequential Machines as Self-
Timed Circuits,’’ IEEE Trans. on Computers, January 1992, pp 12-17.

[Da89] David I., ‘‘The self-timed FIFO’’ Technical Report No. 731, Dept. Elect. Eng.,
Technion, Oct. 1989.

[DGY89b] David I., Ginosar R. and Yoeli M., ‘‘An Efficient Implementation of Boolean Func-
tions and Finite State Machines as Self-Timed Circuits’’, Computer Architecture
News (CAN), pp. 91-104, Dec 89.

[Eb87] Ebergen J. C., ‘‘Translating Programs into Delay-Insensitive Circuits’’, Ph.D.
Thesis ,Eindhoven University of Technology, 1987.

[Ha84] D.S. Ha and S.M. Reddy, ‘‘On Testable Self-timed Logic Circuits,’’ Proceedings of
the IEEE International Conference on Computer Design: VLSI in Computers ICCD
’84, pp. 296-301, 1984.

[Ho78] Hoare C.A.R, ‘‘Communicating Sequential Processes’’, Communications of the
ACM, Vol. 21 No. 8, pp. 666-677, August 1978.

[Ka84] Katevenis M.G.H., ‘‘Reduced Instruction Set Computer for VLSI,’’ The MIT Press,
1984.

[La87] Lau, C. H., ‘‘Self: a Self-Timed Systems Design Technique,’’ Electronic Letters,
Vol. 23, No. 6, March 1987, pp. 269-270.

[Ma86] Martin A. J., ‘‘Compiling Communicating Processes into Delay Insensitive VLSI cir-
cuits,’’ in Distributed Computing, vol. 1, no 3, 1986.

[Ma89a] Martin A. J., S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus, ‘‘The design of
an Asynchronous Microprocessor’’, Caltech-CS-TR-89-02, Computer Science
Department, California Institute of Technology, 1989, and Proc. Caltech Conf. on
VLSI, 1989.

[Ma89b] Martin A. J., ‘‘Programming in VLSI: From communicating processes to delay-
insensitive circuits,’’ in ‘‘UT Year of Programming Inst. on Concurrent Program-
ming,’’ C.A.R. Hoare (ed.), Addison-Wesley, 1989.

[MFR85] Molnar, C.E., Fan, T.P., and Rosenberger, F.U., ‘‘Synthesis of Delay-Insensitive
Modules,’’ Journal of Distributed Computing, Vol.1, 1986, pp. 226-234.

[Rem85] Rem M., ‘‘Concurrent Computations and VLSI Circuits’’, in Control Flow and Data
Flow; Concepts of Distributed Computing, (M. Broy ed.), Springer-Verlag, pp. 399-
437, 1985.

[Se80] Seitz, C.L., ‘‘System Timing,’’ in C. Mead and L. Conway, Introduction to VLSI
Systems, Addison-Wesley, 1980, pp. 218-262.

- 23 -

[Si81] Singh N. P., ‘‘A Design Methodology for Self-Timed Systems,’’ M.Sc. Thesis, MIT
Laboratory for Computer Science Technical Report TR-258, MIT, Cambridge,
Mass., February 1981.

[Sn85] Van de Snepscheut, J. L. A., Trace Theory and VLSI Design, LNCS 200, 1985.

